The structure of Escherichia coli ExoIX—implications for DNA binding and catalysis in flap endonucleases
نویسندگان
چکیده
Escherichia coli Exonuclease IX (ExoIX), encoded by the xni gene, was the first identified member of a novel subfamily of ubiquitous flap endonucleases (FENs), which possess only one of the two catalytic metal-binding sites characteristic of other FENs. We have solved the first structure of one of these enzymes, that of ExoIX itself, at high resolution in DNA-bound and DNA-free forms. In the enzyme-DNA cocrystal, the single catalytic site binds two magnesium ions. The structures also reveal a binding site in the C-terminal domain where a potassium ion is directly coordinated by five main chain carbonyl groups, and we show this site is essential for DNA binding. This site resembles structurally and functionally the potassium sites in the human FEN1 and exonuclease 1 enzymes. Fluorescence anisotropy measurements and the crystal structures of the ExoIX:DNA complexes show that this potassium ion interacts directly with a phosphate diester in the substrate DNA.
منابع مشابه
Molecular interactions of Escherichia coli ExoIX and identification of its associated 3′–5′ exonuclease activity
The flap endonucleases (FENs) participate in a wide range of processes involving the structure-specific cleavage of branched nucleic acids. They are also able to hydrolyse DNA and RNA substrates from the 5'-end, liberating mono-, di- and polynucleotides terminating with a 5' phosphate. Exonuclease IX is a paralogue of the small fragment of Escherichia coli DNA polymerase I, a FEN with which it ...
متن کاملActive site substitutions delineate distinct classes of eubacterial flap endonuclease
FENs (flap endonucleases) play essential roles in DNA replication, pivotally in the resolution of Okazaki fragments. In eubacteria, DNA PolI (polymerase I) contains a flap processing domain, the N-terminal 5'-->3' exonuclease. We present evidence of paralogous FEN-encoding genes present in many eubacteria. Two distinct classes of these independent FEN-encoding genes exist with four groups of eu...
متن کاملLocation of putative binding and catalytic sites of NaeI by random mutagenesis.
Endonuclease NaeI is a prototype for an unusual group of type II restriction endonucleases that must bind two DNA recognition sequences to cleave DNA. The naeIR gene, expressed from a Ptac promotor construct, was toxic to Escherichia coli in the absence of NaeI-sequence specific methylases. The naeIR gene was mutagenized with N-methyl-N'-nitrosoguanidine; four classes of NaeI variants were isol...
متن کاملFlap endonucleases pass 5′-flaps through a flexible arch using a disorder-thread-order mechanism to confer specificity for free 5′-ends
Flap endonucleases (FENs), essential for DNA replication and repair, recognize and remove RNA or DNA 5'-flaps. Related to FEN specificity for substrates with free 5'-ends, but controversial, is the role of the helical arch observed in varying conformations in substrate-free FEN structures. Conflicting models suggest either 5'-flaps thread through the arch, which when structured can only accommo...
متن کاملStudy of Mutations in the DNA gyrase gyrA Gene of Escherichia coli
Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 41 شماره
صفحات -
تاریخ انتشار 2013